
RINGSPANN®

federbetätigt - hydraulisch gelüftet

Eigenschaften								
Klemmeinheit	K							
Standard	Е							
Wahlweise stehen die Größen 32, 37, 42, 47, 57, 70, 90, 105, 140 oder 160 zur Verfügung	032 bis 160							
Federbetätigt	F							
Hydraulisch gelüftet	Н							
Keine Nachstellung bei Verschleiß	К							
Für Kolbenstangendurchmesser von 12 mm bis 115 mm	012 bis 115							
Rostollhoispiol								

Bestellbeispiel

Klemmeinheit KE 037 FHK mit Kolbenstangendurchmesser 16 mm:

KE 037 FHK - 016

Beschreibung

Die Klemmeinheit Typ KE ... FHK klemmt und hält Kolbenstangen von Hydraulik-Zylindern mit einer berechneten Klemmkraft und wirkt in

beide Bewegungsrichtungen. Die Klemmkraft wird dabei von Tellerfedern aufgebracht. Das Lösen erfolgt mittels Hydraulikdruck.

Die Klemmeinheiten werden mit einem kundenseitigen Anschlussflansch an Zylinder bzw. andere Maschinenteile befestigt.

Funktion

Während des Arbeitshubes des Hydraulik-Zylinders liegt Hydraulikdruck auf der Klemmeinheit. Durch diesen Druck werden über den Kolben die Tellerfedern zusammengedrückt. In dieser Stellung sind die Spannscheiben axial spannungslos. Dadurch kann die Kolbenstange frei bewegt werden.

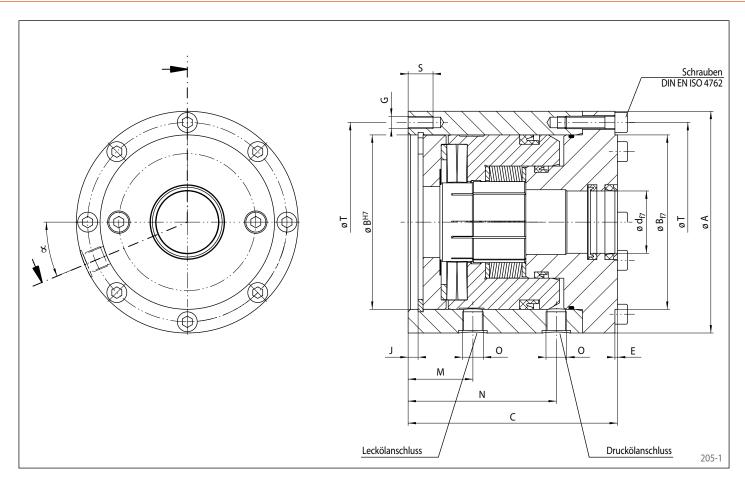
Wird der Druck auf die Klemmeinheit weggenommen, wirkt die Kraft der Tellerfedern voll auf den Kolben und damit auf das Scheibenpaket. Die Spannscheiben übersetzen die axial wirkende Federkraft in eine mindestens fünfmal so große Radialkraft auf die geschlitzte Spannhülse, welche die radialen Spannkräfte auf die Kolbenstange überträgt. Dadurch wird die Kolbenstange unverstellbar festgehalten.

Bei jedem Druckabfall, also auch bei unvorhergesehenen, spricht die Klemmeinheit umgehend und zuverlässig an.

Betriebsverhalten

Die Klemmeinheit sichert präzise die Kolbenstange gegen unbeabsichtigte axiale Bewegung.

Man kann z. B. an Maschinen mit Zylindern oder Linearmotoren eine bestimmte Position stufenlos anfahren. Diese Position kann dann mit der Klemmeinheit mechanisch genau gehalten werden.


Die Genauigkeit der Klemmeinheit ist unabhängig von der Größe und der Richtung der Kraft in der Kolbenstange bis zur angegebenen maximalen Haltekraft. Es ist keine Bewegung der Kolbenstange erforderlich, damit die Haltekraft wirksam wird; die Klemmkraft wirkt vielmehr im Notfall sofort und unabhängig von äußeren Kräften. Muss eine Kolbenstange aus der Bewegung heraus abgebremst werden, so bringt die Klemmeinheit bei Druckausfall praktisch verzögerungsfrei eine zeitunabhängige konstante Reibkraft auf. Die Verzögerung der Kolbenstange ist daher gleichmäßig und schonend für die verzögerten Anlagenteile.

Eigenschaften

- Zur stufenlosen Klemmung von Kolbenstangen
- · Federbetätigt, hydraulisch gelüftet
- Haltekräfte in beide Bewegungsrichtungen übertragbar
- Beim Lösen keine Kraftbeaufschlagung (Anheben) der Kolbenstange notwendig

RINGSPANN®

federbetätigt – hydraulisch gelüftet

Größe	Kolben- stangen- ø d ¹⁾	Halte- kraft F _H ²⁾	A	В	С	E	G	J	М	N	0	S	Т	X ³⁾	Erford. Löse- druck	Max. zul. Druck	Ölvol. pro Hub	α	Gewicht
	mm	N	mm	mm	mm	mm		mm	mm	mm		mm	mm		bar	bar	cm ³	Grad	kg
32	12	2 500	72	48	76	2	M 5	5	26	54	R1/8"	9	60	4	57	120	1	22,5	2,1
37	14 16 18	5 000	85	60	88	2	M 6	6	31	64	R1/8″	11	72	4	68	120	2	22,5	3,4
42	20 22	8 000	100	68	100	2	M 6	6	34	72	R1/8"	11	85	4	82	120	2	22,5	5,3
47	25 28	12 500	110	80	115	2	M 6	7	42	85	R1/8″	15	92	6	84	120	3	22,5	7,3
57	(30) 32 34	19 000	130	95	130	2	M 8	7	48	96	R1/4"	16	112	6	88	120	5	22,5	11,5
70	36 40 45	30 000	150	116	148	3	M 8	4	52	108	R1/4"	16	132	8	102	120	6	22,5	17,2
90	50 (55) 56	48 000	178	140	168	3	M 10	8	52	119	R3/8″	20	160	8	108	160	13	22,5	27,2
105	60 63 70	68 000	210	168	185	3	M 12	10	60	133	R3/8″	22	190	8	122	160	17	22,5	41,2
140	80 (85) 90	120 000	273	220	230	3	M 14	12	75	172	R3/8″	25	250	12	115	160	39	15	86,9
160	100 110 (115)	200 000	330	270	270	5	M 18	16	90	200	R3/8"	38	300	12	110	160	64	15	148,2

 $^{^{1)}}$ Fettgedruckte Durchmesser bevorzugen. Die Durchmesserreihe ohne () entspricht DIN 24334. $^{2)}$ Bitte beachten Sie die Technischen Hinweise auf Seite 209.

³⁾ Anzahl der Gewindebohrungen G bzw. Schrauben DIN EN ISO 4762 auf Teilkreis øT.